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ABSTRACT  

 

This paper presents a proposed approach of automatic image to image 

registration based on matching edge segments. Here, edge segments are 

extracted from the two images and their signatures are generated using chain 

coding. Segment signatures are utilized in a matching procedure to find common 

parts of edge segments.  Cross correlation matching is then employed to refine 

the positions of midpoints of those common parts in the two images. The 

matching results can then used to compute the transformation parameters 

necessary for the transformation of the image to be matched. 

  

The test images consist of two satellite images of different platforms and with 

different resolutions. One image is a QuickBird image with 0.6 m ground 

sample distance and the other image is a SPOT-5 image with a 2.5 m ground 

sample distance. The images cover the same area which is a somewhat urban 

area with insignificant height variation. The results reached by applying the 

proposed approach on the test images have proved the validity and efficiency of 

matching edge segments in automatic image-to-image registration. 

 

Keywords:  Image Registration, Chain Coding, Edge Detection, Image 

Matching, Correlation Techniques. 
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1. INTRODUCTION 

 

In many cases, images of one area that are collected from different sources must 

be used together. To be able to compare separate images pixel by pixel, the pixel 

grid of each image must conform to the other images in the data base. The tools 

for rectifying image data are used to transform dissimilar images to the same 

coordinates system. Registration is the process of making an image conforms to 

another image [2]. A map coordinates system is not necessarily involved. To 

carry out image-to-image registration automatically, corresponding features in 

both images are to be found in an automated procedure, which is known as 

image matching in digital photogrammetry. The common features in the two 

images, resulted by matching, can then be used to determine the transformation 

parameters required for the registration process. The image to be registered is 

finally transformed from its own coordinate system into the coordinate system 

of the reference image. Resampling by using any of the known resampling 

methods would be needed during the transformation process. 

 

Matching is the most fundamental problem in digital photogrammetry that is 

required in most photogrammetric procedures. In the matter of fact, matching is 

a complicated problem so that there is no general solution that works well on all 

types of imagery, different object spaces and varying illumination conditions. 

Several matching methods have been proposed. The main difference is the 

selection of matching features and the way their similarity is determined. 

 

Area-based matching, or Intensity-based matching, is one of the most popular 

methods. This method determines the correspondence between two image areas 

according to the similarity of their gray level values [4,11]. The cross correlation 

and least squares correlation techniques are well-known techniques for area 

based matching. In the first technique, a small image patch is selected in one 

image and compared with image patches of the same sizes within a search 

window of the other window. The maximum cross-correlation factor serves as 

the similarity criterion. In least-squares matching, the gray level differences 

between template and matching windows are minimized by applying a 

transformation to the matching window. The matching is done in an iterative 

procedure; the parameters calculated during the initial pass are used in the 

calculation of the second pass and so on until an optimum solution is 

determined.  

 

In feature-based matching, features are extracted from images before they are 

matched. The process of matching is usually performed by comparing feature 

attributes or descriptors such as orientation, gradient, shape, etc [9,12]. 

Topological and geometrical relations among features help constraining the 

large space of possible mappings among the features. Symbolic matching refers 
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to methods that compare symbolic descriptions of image features. Symbolic 

descriptions can be implemented as graphs, trees or semantic nets relating 

derived image features [1,10].  

 

2. FEATURE-BASED MATCHING 

 

In contrast to intensity-based matching, feature-based matching does not 

compare gray values directly rather it compares derived quantities, referred to as 

features that may include points, lines, regions, or such abstract quantities as 

moments. Features are more suitable matching primitives than gray values, 

leading, in general, to more robust matching methods. For example, less strict 

conditions apply for approximate locations of conjugate matching primitives.  

Moreover, features are more closely related to objects which eventually appear 

on a map than the original gray values. A gray value can mean anything. 

However, an edge may refer to an object boundary and as such is more 

meaningful in terms of the desired end product.  

 

Feature-based matching proceeds in three steps. First, appropriate features are 

extracted from the images.  The second step is to find corresponding features 

based on similarity and consistency criteria. Similarity depends on the feature 

attributes whereas consistency depends on the degree to which the mapping 

function is satisfied. The mapping function describes the relationship between 

the images to be matched. The last step is to check the consistency of the 

matching results. The various feature-based matching techniques follow these 

three steps but differ with respect to extracted features, similarity and 

consistency measures, and mapping functions. 

 

Point features are usually referred to as interest points. The popularity of point 

features in photogrammetry stems from the fact that the matching is easier than 

that of more complex features. Interest points can be characterized in terms of 

distinctness, stability, invariance, uniqueness and interpretability [1]. An interest 

operator satisfying these criteria is usually implemented in three steps. First, 

optimal windows in the image are located based on the average gradient 

magnitude, for example. Second, the image function within the selected 

windows is categorized by using statistical tests. Third, optimal points are 

located within the selected windows using suitable estimation techniques. 

Finding conjugate interest points is usually performed by intensity-based 

matching.  

  

A line is richer in information than a point. Extracting lines begins with 

detecting local edges which are then aggregated into more globally defined lines 

using various grouping criteria. Local edges are detected using an edge operator. 

Many edge detection methods are described in the literature. There are several 
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differential edge operators which are either first difference operators or second 

difference operators [7,8]. 

 

Since intensity changes occur at different scales in an image, a good edge 

detector should satisfy two criteria. First it should be a differential operator, 

taking either a first or a second derivative of the image. The other criterion is the 

capability of acting at any desired scale. The Laplacian of the Gaussian (LoG) 

combines the scale dependency with differentiating the image [5,6]. A Gaussian 

function serves to smooth the image. The Gaussian is limited in the spatial and 

frequency domain, which is its most unique characteristic compared to other 

smoothing functions. As a differencing operator, the Laplacian is chosen. The 

two operations are combined and the result is the LoG operator. Edges are 

detected at the zero crossings, i.e., the locations in the convolved image at which 

the sign changes. Although the LoG has many merits it still suffers from two 

major drawbacks. Dislocalization is one problem. In the case of non-linear edges 

the zero crossings will be displaced at the corners of the edge [10]. Another 

problem arises from the property that the zero crossings form closed contours. 

Therefore, a problem occurs when edges intersect.  

 

Another popular edge operator was devised by Canny [8]. It is similar to the 

LoG but belongs to the class of directional derivatives. Canny imposes three 

criteria for an ideal edge operator. The first criterion is good detection, i.e., low 

probability of wrongly marking non-edge points and low probability of failing to 

mark real edge points. The second criterion concerns good localization, i.e., 

points marked as edges should be as close as possible to the center of the true 

edges. Thirdly, for a single edge point, only one response should be triggered. In 

order to extract the matching primitives, Canny’s edge detector is used in this 

paper to find edges in the two images under consideration. Here, the image is 

convolved with the Gaussian function. The first directional derivative of the 

convolved image is computed. Upon that the gradient magnitude at each point of 

the convoluted image is calculated.  A non-maximum suppression is performed 

in the direction of the gradient. The resulting edge image is thresholded in order 

to eliminate false edges. At last, a fine to coarse technique can be applied to 

mark additional edges. 

 

Edge operators produce an output at each pixel. To produce discrete edges, this 

output must be thresholded and the pixels over the threshold labeled as edge 

pixel. Real image edges usually cause a region of pixels around the edge to be 

over the threshold. A thinning operation is thus employed so that only the 

maximum response in the direction perpendicular to the edge is called an edge 

[4]. Extracted edges are seldom continuous due to image noise and scene scraps. 

A linking step fills in small edge gaps based on the examination of pixels in the 

gap or on heuristics such as gap size.  
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Following the edge thinning and linking processes, a suitable representation or 

description of edges is to be generated utilizing attributes of edge points. A 

known method to represent a boundary line is using discrete boundary codes, a 

coding method of continuous contour with a sequence of numbers, each number 

corresponding to a segment direction [3,5]. This representation is compact, 

invariant to translation, but depends on rotation and scaling transformations. 

However, the difference in the code reflects the turning angles, which are 

invariant to the transformations. In tangential representations (ψ-s), the tangent 

ψ angle is encoded as a function of arc length s. This is similar to differential 

chain codes, but don’t have to be pixel-to-pixel. In radial representations (r-s), 

the distance s from the center is encoded as a function of arc length s.  

 

Two interesting description methods of closed contours are the Fourier theory-

based method and the Moment theory-based method [8]. The Discrete Fourier 

Transform (DFT) or the Fourier Series (FS) are generally used to describe the 

shape feature from its boundary. They give a sequence of complex coefficients 

called Fourier descriptors. These coefficients represent the shape of an object in 

the frequency domain where the lower frequencies symbolize its general 

contour, and the higher frequencies represent the details of its contour. Fourier 

descriptor representation is compact, accurate and also invariant to geometric 

transformations. The Moment theory-based method uses region-based moments 

to characterize the contour of an object with a set of parameters that are 

invariant to geometric changes. Different matching strategies can then be 

applied on those edge descriptors.   

 

3. DISCRETE BOUNDARY ENCODING  
 

One popular approach for representation or description of extracted edges is the 

use of discrete boundary codes. This encoding is similar in concept to the use of 

curvature, in the sense that it develops a local measure of the boundary 

orientation as the curve is traversed (i.e. as a function of curve length). Thus, 

given a set of discrete boundary orientation (and perhaps length) primitives, a 

polygonal representation of the boundary is used to generate the code. Since 

discrete samples are considered here, the resultant parameterization is in terms 

of a sequence or chain of discrete descriptors, or chain codes. 

 

Referring to Figure 1, a piecewise linear approximation to a digital edge 

segment is developed using a set of orientation-only primitives. Therefore, the 

chain encoding approach is similar to generation of a syntactic description of the 

boundary, using the primitives shown in the figure [8]. 
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An alternate mechanism for viewing this approach is derived from a 

neighborhood matrix with each neighbor coded to correspond to the primitives 

in the figure. This matrix appears as follows:  
                                                         

4 3 2 

5  1 

6 7 8 

  

Having assigned the chain code of edge segment points in certain direction (say 

clockwise), the chain code of the points in the reversed direction (anti-

clockwise) can also be determined. Let an edge segment that has n number of 

points with the chain codes assigned starting from the first point (point 1) until 

reaching the last point (point n). The chain code for the segment points in the 

reversed direction, arranged from point n to point 1, can be given as follows:   

 

             Reversed chain code at any point k = (Chain code at the point k) – 4           

 

If the resulted value of the reversed code is zero or negative, add 8 to it. The 

codes of the points are then arranged from point n to point 1 to get the right 

coding of the segment. 

 

Therefore, for the edge segment of Figure 1, the reversed chain code results by 

applying Equation 1 can be written as: 

 

                                       555344455665533322233221187811 

                                        

However, the order of the computed code is to be reversed to give the right 

code, starting from point n and ending with point 1. Thus, the right code has the 

following final structure: 

 

                                        118781122332223335566554443555 

 

Three parameters are considered when a chain code is created for a curve. They 

are start point, the step between two consecutive sample points along the curve, 

and the tracking direction on which the curve is traced. Choosing a different 

starting point usually leads to a different (shifted) coding result. Using a step of 

one between two consecutive sample points assures accurate representation of 

the shape. Rotation has similar effect in coding as choosing a different start 

point. However, the angles no matter how the curve is geometrically 

transformed remain unchanged. Since the number in the chain code represents 

the direction, the difference in the code reflects the turning angles. They are 

invariant to the transformations. 
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4. THE PROPOSED APPROACH  
 

This section presents a proposed approach of automatic image to image 

registration based on matching edge segments. Here, edge segments are 

extracted from the two images (reference image and matched image) and their 

signatures are generated using chain coding. Segment signatures are utilized in a 

matching procedure to find common parts of edge segments representing 

corresponding features. Below are the procedures to be followed for the 

implementation of this approach. 

 

1. Canny’s edge detector is used to find edges in each of the two images. 

The detected edge points are aggregated into edge segments utilizing both 

gradient magnitude and orientation.  

 

2. Having the resulted edge images, a row-after-row scanning process can be 

followed to catch any of the end points of each edge segment. Having 

found an end point, the chain code is assigned to the points of each edge 

segment until reaching the other end. The centroid of each segment is 

computed by averaging the coordinates of segment points. Coordinates 

and chain code of each segment point as well as centroid coordinates are 

recorded. 

 

3. Each edge segment in the reference image is matched against candidate 

edge segments in the matched image. All edge segments whose centroids 

are located within a specified search window in the matched image are 

considered to be Candidates. The size of the search window can be 

computed using available information regarding the image formation 

process.  

 

4. The matching process of two segments checks the similarity of chain 

codes of their points. The matching starts by comparing point codes while 

laying the shorter segment along the longer segment such that the 

beginning points of the segments coincide. The shorter segment is slipped 

one pixel at a time along the longer segment. In each relative position of 

the two segments, the points having similar chain codes are recorded and 

counted.   

 

5. The matching score due to matching two segments is evaluated as the 

ratio of number of points of similar chain codes to the number of points of 

the shorter segment. The highest matching score, if it exceeds a selected 

threshold, indicates a match.  
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6. In some cases, depending on edge dissimilarities in the two images and 

circumstances of the edge aggregation process, the two segments to be 

matched are sorted in a reversed order. To overcome this problem, the 

matching is retried with shorter segment slide along the reversed version 

of the longer segment. The chain codes of the reversed version are 

determined using the procedure explained in Section 3. 

 

7. In consequence of the matching process, the common parts in each two 

matched segments, which have points of similar codes, are extracted and 

recorded. The disparity values are computed for the extracted common 

points. This is to ascertain that the figural continuity is preserved after 

applying the matching procedure.  

 

8. The coarse locations of any of the common points, of each two matched 

edge segments, are to be determined precisely by an intensity-based 

matching procedure. Here the location of common point in one image is 

fixed and the exact corresponding location in the other image is found 

automatically, to sub-pixel accuracy, using prototype cross correlation 

program. The input data to the program are the pixel coordinates of the 

selected common point in the two images, which determine the centers of 

the reference and search windows. The corresponding location of 

common point in the other image is found, to sub-pixel accuracy, by 

fitting a two-dimensional polynomial to the nine pixels centered at the 

position with the highest correlation, and searching for the maximum.  

 

9. The precise location of the common points in the two images determines 

the parameters of the transformation needed to bring the images into 

alignment. 

 

10.  The image to be registered is finally transformed from its own coordinate 

system into the coordinate system of the reference image.  

 

 

5. EXPERIMENTATION 

 

The test images consist of two satellite images of different platforms and with 

different resolutions. The images cover the same area in the region of Kofra, 

Libya. It is a somewhat urban area with insignificant height variation. One 

image is a panchromatic QuickBird image with 0.6 m ground sample distance. 

Figure 2 shows a patch of the image, covering about 0.36 km by 0.36 km ground 

area. The other image is SPOT-5 image with a 2.5 m ground sample distance. 

This image is resampled to generate an equivalent image with a 0.6 m ground 

sample distance, in order to be comparable with the QuickBird image. Figure 3 
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exhibits a patch of the generated image, covering the same ground area shown in 

Figure 2. The two patches are cut out from the original test images such that 

there are shifts of few pixels in the coordinates of corresponding feature points. 

 

The edge segments are extracted by applying Canny’s edge detector and the 

edge tracking algorithm to the two image patches, using MATLAB software 

package. Figure 4 and Figure 5 illustrate the resulted binary edge patches 

containing extracted edge segments. Due to the variation in radiometric and 

geometric characteristics of the two patches, extracted edge segments of 

corresponding features look differently. They are not exact copies of each other. 

Also, corresponding edges sometimes combine different features of the object 

space.  Thus the interest is to find those common parts of the edge segment 

representing corresponding features.  

 

The first task after extracting edge segments in both image patches is to assign 

the right signature to each segment using the chain coding. Edge segments that 

have more then twenty points are only considered in the coding process. For 

each of the two edge patches, a row-after-row scanning process is adopted to 

look for any of the end points of each edge segment. Having found an end point, 

the chain code is assigned to the points of each edge segment until reaching the 

other end. Coordinates and chain code of each segment point as well as 

coordinates of segment centroid are recorded. Figure 6 and Figure 7 illustrate 

the edge patches containing edge segments having more than twenty points. 

 

Having coded each edge segment in both edge patches, the task now is to match 

edge segments to find each two conjugate segments. The matching process is 

carried out using the procedure described in Section 4. A prototype program is 

developed to implement the edge matching procedure. The size of the search 

window is taken as 25 pixels. The threshold for the matching score is selected as 

0.7. This means that at least 70% of the points of each of any two matched edge 

segments have the same chain code. The common points, points of similar chain 

code, of each two matched segments are extracted and recorded. The figural 

continuity is checked throughout the computation of the disparity values of 

resulted common points.  

 

For each two matched edge segments, the location of the middle of common 

points in the reference patch is fixed and the exact corresponding location in the 

other patch is found automatically, to sub-pixel accuracy, using prototype cross 

correlation program. The pixel coordinates of the middle common point in the 

two images are employed as  centers of the reference and search windows. The 

size of the reference window is specified as 11 pixels by 11 pixels. The size of 

the search window is chosen as 31 pixels by 31 pixels. A matching threshold of 

0.7 is considered.  
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6. RESULTS AND ANALYSIS 
 

The numbers of extracted edge segments that have more then twenty points are 

487 in the Quickbird patch and 513 in the Spot patch. Each segment in the Spot 

patch is matched against its matching candidates in the Quickbird patch 

adopting a search window size of 25 pixels and matching threshold of 0.7. 

Figure 8 and Figure 9 show the matched segments in each of the two patches. 

 

By running the edge matching program, only 111 Spot segments have got 

matches in the Quickbird patch. No double matches have been detected; each 

segment of the 111 spot segments has only one match in the Quickbird patch. 

Looking at the disparity values of the common points of each two matched 

segments, it was found that they satisfy the figural continuity. However, there 

are two Spot segment pairs where each pair is matched to the same segment in 

the Quickbird patch. That is due to that each pair consists of two nearly 

horizontal segments that are close to each other. 

 

By employing a prototype cross correlation program, the corresponding 

locations of the middle common point of each two matched edge segments in 

the both patch are refined. 9 matched segments are excluded due to their 

proximity to the image borders so that the search window is located fully or 

partially outside the image. Thus, only 102 middle point pairs are considered. 

Out of those 102 point pairs, 96 points have matching scores exceeding the 

selected threshold. Table 1 lists the pixel coordinates of the middle points in 

Spot patch and their conjugates in Quickbird patch obtained by applying 

correlation matching. The coordinate differences between the two coordinate 

sets as well as the estimated coefficient of correlation are also included in the 

table.  

 

By performing an affine transformation between the two matched sets of 

coordinates, root mean square errors of 0.34 pixel and 0.24 pixel are resulted in 

the column and row directions, respectively. Those figures indicate the accuracy 

of the entire matching process given that the two patches have different 

radiometric characteristics. The resulted parameters of the affine transformation 

are: a = 0.9973, b = -0.0010, c = -2.195, d = -0.0011, e = 1.0003 and f = -1.7078. 

This is based on the affine model that x' = a x + b y + c and y' = d x + e y + f  

with (x,y) point coordinates in the Spot patch and (x',y') point coordinates in the 

Quickbird patch. x- and y-coordinates correspond to column- and row- 

coordinates, respectively, of the points listed in Table 1. The resulted 

transformation parameters can then be used to transform the Quickbird patch 

into the pixel coordinate system of the Spot patch. 
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7. CONCLUSIONS  

A proposed approach of automatic image to image registration based on 

matching chain-coded edge segments are presented and tested. The approach 

does not need any manual interaction and therefore has the potential to be 

integrated into an automatic workflow. With respect to the results of 

experiments made on the test imagery, matching chain-coded edge segments is 

found successful in identifying conjugate points. The matching ambiguity occurs 

mainly at having entirely straight edge segments with no critical points at all, 

especially in the cases they are partially existed or they are close to each other in 

the same image. 
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Figure 1: Chain Encoding of A Digital Edge Segment 
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Figure 2: Quickbird Image Patch of the Test Area 
 

 
 

Figure 3: Spot Image Patch of the Test Area 
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Figure 4: Edges detected in Quickbird Patch  
 

  

 
 

 Figure 5: Edges detected in Spot Patch  
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Figure 6: Edges of more than 20 points in Quickbird Patch 
 

 

 
 

Figure 7: Edges of more than 20 points in Spot Patch 
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Figure 8: Matched Edges of Quickbird Patch 
 

 

 
 

Figure 9: Matched Edges of Spot Patch 
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Table 1: Pixel Coordinates of Middle Points of Matched Segments in Spot Patch 

and Their Conjugates in Quickbird Patch Located by Matching 

 

Seg. 

No. 

Coordinates of 

Middle Points in 

Spot Patch 

Coordinates of 

Matched Points in 

Quickbird Patch 

Differences in 

Coordinates 
Correlation 

Coefficient 

column row column row column row 

1 528 29 524.8 26.8 3.2 2.2 0.86 

2 438 13 434.9 11.5 3.1 1.5 0.96 

3 107 52 104.5 50.2 2.5 1.8 0.82 

4 238 35 235.0 32.8 3.0 2.2 0.73 

5 255 29 251.9 27.0 3.1 2.0 0.88 

6 242 40 239.2 37.9 2.8 2.1 0.84 

7 389 57 385.5 54.7 3.5 2.3 0.80 

8 403 55 399.1 52.9 3.9 2.1 0.89 

9 289 19 286.0 17.2 3.0 1.8 0.94 

10 458 54 454.3 52.0 3.7 2.0 0.77 

11 471 28 467.5 26.0 3.5 2.0 0.84 

12 84 53 81.7 51.1 2.3 1.9 0.89 

13 23 53 20.5 51.8 2.5 1.2 0.91 

14 469 60 464.7 57.7 4.3 2.3 0.78 

15 153 59 150.8 57.2 2.2 1.8 0.79 

16 116 87 113.3 85.2 2.7 1.8 0.88 

17 280 87 276.8 85.4 3.2 1.6 0.84 

18 449 79 445.4 76.6 3.6 2.4 0.81 

19 111 95 108.2 93.3 2.8 1.7 0.81 

20 46 99 43.8 97.4 2.2 1.6 0.88 

21 84 102 81.1 100.3 2.9 1.7 0.90 

22 551 102 547.7 99.7 3.3 2.3 0.81 

23 91 111 88.6 109.2 2.4 1.8 0.95 

24 459 118 455.4 116.0 3.6 2.0 0.81 

25 360 120 356.6 118.1 3.4 1.9 0.86 

26 327 127 323.9 124.9 3.1 2.1 0.90 

27 521 118 517.3 116.2 3.7 1.8 0.83 

28 554 122 550.5 119.7 3.5 2.3 0.86 

29 301 120 297.8 117.8 3.2 2.2 0.91 

30 413 133 410.1 130.9 2.9 2.1 0.69 

31 243 99 240.0 96.7 3.0 2.3 0.87 

32 367 145 363.7 142.9 3.3 2.1 0.84 

33 517 139 513.3 136.7 3.7 2.3 0.88 

34 549 141 545.5 138.7 3.5 2.3 0.86 

35 60 157 57.9 154.9 2.1 2.1 0.87 
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Table 1 (Continued) 

 

Seg. 

No. 

Coordinates of 

Middle Points in 

Spot Patch 

Coordinates of 

Matched Points in 

Quickbird Patch 

Differences in 

Coordinates 
Correlation 

Coefficient 

column row column row column row 

36 59 157 56.8 154.9 2.2 2.1 0.86 

37 120 152 117.1 150.2 2.9 1.8 0.81 

38 180 158 177.0 155.7 3.0 2.3 0.88 

39 68 161 65.8 159.1 2.2 1.9 0.85 

40 244 157 240.9 154.6 3.1 2.4 0.87 

41 358 182 354.7 179.8 3.3 2.2 0.85 

42 535 183 531.2 180.9 3.8 2.1 0.88 

43 549 204 545.2 201.9 3.8 2.1 0.88 

44 192 193 188.9 190.8 3.1 2.2 0.94 

45 304 200 300.8 197.7 3.2 2.3 0.87 

46 494 206 490.2 204.1 3.8 1.9 0.82 

47 381 229 377.2 226.9 3.8 2.1 0.88 

48 516 259 512.1 256.6 3.9 2.4 0.85 

49 570 234 566.3 231.6 3.7 2.4 0.85 

50 403 245 399.2 242.6 3.8 2.4 0.85 

61 23 254 21.1 252.5 1.9 1.5 0.89 

52 423 245 419.3 242.8 3.7 2.2 0.88 

53 283 260 279.7 258.1 3.3 1.9 0.90 

54 116 314 113.5 312.4 2.5 1.6 0.85 

55 143 285 140.2 282.9 2.8 2.1 0.85 

56 29 299 26.9 297.6 2.1 1.4 0.82 

57 324 296 320.1 293.9 3.9 2.1 0.89 

58 237 316 233.9 314.0 3.1 2.0 0.87 

59 306 322 302.3 319.7 3.7 2.3 0.84 

60 114 314 111.6 312.4 2.4 1.6 0.85 

61 122 324 119.5 322.1 2.5 1.9 0.91 

62 518 317 514.1 314.9 3.9 2.1 0.90 

63 203 353 199.9 351.0 3.1 2.0 0.90 

64 540 329 536.1 326.4 3.9 2.6 0.87 

65 303 354 299.2 351.4 3.8 2.6 0.89 

66 438 350 433.9 347.7 4.1 2.3 0.91 

67 88 369 85.6 367.6 2.4 1.4 0.91 

68 489 345 485.0 343.0 4.0 2.0 0.90 

69 377 347 373.7 345.0 3.3 2.0 0.93 

70 518 373 514.1 371.0 3.9 2.0 0.89 
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Table 1 (Continued) 

 

Seg. 

No. 

Coordinates of 

Middle Points in 

Spot Patch 

Coordinates of 

Matched Points in 

Quickbird Patch 

Differences in 

Coordinates 
Correlation 

Coefficient 

column row column row column row 

71 274 389 270.6 387.0 3.4 2.0 0.86 

72 192 404 188.7 402.0 3.3 2.0 0.89 

73 353 403 349.4 401.1 3.6 1.9 0.92 

74 59 402 56.5 400.3 2.5 1.7 0.85 

75 523 429 518.8 426.9 4.2 2.1 0.87 

76 391 429 387.4 427.0 3.6 2.0 0.94 

77 86 432 83.7 430.5 2.3 1.5 0.90 

78 232 434 228.6 431.9 3.4 2.1 0.88 

79 404 438 400.5 436.0 3.5 2.0 0.93 

80 500 450 496.4 447.4 3.6 2.6 0.83 

81 167 440 163.8 438.2 3.2 1.8 0.87 

82 463 471 459.2 469.0 3.8 2.0 0.83 

83 488 488 484.2 486.1 3.8 1.9 0.92 

84 258 484 254.7 482.2 3.3 1.8 0.90 

85 455 502 451.2 499.9 3.8 2.1 0.84 

86 437 498 433.2 495.9 3.8 2.1 0.82 

87 409 507 405.5 505.1 3.5 1.9 0.89 

88 298 503 294.9 501.0 3.1 2.0 0.80 

89 351 473 347.2 470.9 3.8 2.1 0.86 

90 37 521 32.9 520.0 4.1 1.0 0.95 

91 36 521 31.7 520.0 4.3 1.0 0.96 

92 98 542 95.5 540.7 2.5 1.3 0.78 

93 250 530 246.6 528.1 3.4 1.9 0.89 

94 404 527 400.3 525.1 3.7 1.9 0.90 

95 396 538 392.4 536.1 3.6 1.9 0.86 

96 505 542 501.0 539.8 4.0 2.2 0.89 

 

 

 

 

 

 

 

 

 

 


